

B. TECH
(SEM IV) THEORY EXAMINATION 2022-23
THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours**Total Marks: 70**

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief. **2 x 7 = 14**

- (a) Discuss the concept of formal languages.
- (b) Provide proofs for at least three closure properties of regular languages.
- (c) Explain the Pigeonhole Principle.
- (d) Discuss the importance of minimizing automata.
- (e) Discuss the concept of ambiguity in context-free grammars.
- (f) Define the Greibach Normal Form.
- (g) Explain the concept of Nondeterministic Pushdown Automata.

SECTION B

2. Attempt any three of the following: **7 x 3 = 21**

- (a) Given an NFA without ϵ -transitions, with the alphabet $\Sigma = \{a, b\}$, and the following transition table:

State		a		b
q0		q1		q0
q1		q2		q1
q2		q2		q0

Determine if the string "aab" is accepted by this NFA. Show the possible state transitions and the final accept/reject decision.
- (b) Convert the following Moore machine into an equivalent Mealy machine:

State		Output		0		1
A		1		B		C
B		0		A		C
C		1		B		B
- (c) What is the Chomsky Hierarchy? Explain the different levels of the hierarchy and the types of languages associated with each level.
- (d) Consider a context-free grammar G with the following productions:
 $S \rightarrow aA$
 $A \rightarrow aA \mid b$
Determine whether the language generated by this grammar is regular or not. Justify your answer.
- (e) Convert the following nondeterministic pushdown automaton to an equivalent deterministic pushdown automaton:
 $Q = \{q0, q1, q2\}$, $\Sigma = \{0, 1\}$, $\Gamma = \{0, 1, \$\}$, $q0 = q0$, $F = \{q2\}$, and the transitions are as follows:
 $\delta(q0, \epsilon, \epsilon) = \{(q1, \$)\}$
 $\delta(q1, 0, \epsilon) = \{(q1, 0)\}$
 $\delta(q1, 1, \epsilon) = \{(q1, 1)\}$
 $\delta(q1, \epsilon, 0) = \{(q2, \epsilon)\}$

SECTION C

3. Attempt any one part of the following: 7 x 1 = 7

- (a) Construct an NFA with ϵ -transitions that recognizes the language $L = \{w \mid w \text{ contains at least two consecutive 0s followed by a 1}\}$. Provide the NFA's state diagram and describe its operation.
- (b) Consider a DFA with the alphabet $\Sigma = \{0, 1\}$ and three states: q_0, q_1 , and q_2 . The transition table for this DFA is as follows:

State | 0 | 1

$q_0 \mid q_1 \mid q_2$

$q_1 \mid q_1 \mid q_2$

$q_2 \mid q_0 \mid q_1$

Determine if the string "0110110" is accepted by this DFA. Show the state transitions and the final accept/reject decision.

4. Attempt any one part of the following: 7 x 1 = 7

- (a) Prove that the language $L = \{0^n 1^n \mid n \geq 0\}$ is not regular using the Pumping Lemma.
- (b) Given two regular languages $L_1 = (ab)^*$ and $L_2 = (ba)^*$, determine whether the intersection of L_1 and L_2 is a regular language. Justify your answer.

5. Attempt any one part of the following: 7 x 1 = 7

- (a) Convert the regular grammar given below into a Finite Automaton (FA):
 $S \rightarrow aS \mid bA$
 $A \rightarrow aB \mid bA$
 $B \rightarrow aA \mid bB$
 $A \rightarrow \epsilon$
- (b) Simplify the following context-free grammar by removing useless symbols and productions:
 $S \rightarrow AB$
 $A \rightarrow aB$
 $B \rightarrow A \mid \epsilon$
 $C \rightarrow S \mid \epsilon$

6. Attempt any one part of the following: 7 x 1 = 7

- (a) Prove that the class of context-free languages is closed under the union operation by providing a detailed construction or algorithm.
- (b) Given the context-free grammar G :
 $S \rightarrow aSb \mid \epsilon$
 $A \rightarrow aA \mid \epsilon$
 $B \rightarrow bB \mid \epsilon$
 $C \rightarrow cC \mid \epsilon$

Determine whether the string "aaabbbccc" belongs to the language generated by G . If yes, provide a derivation; if no, explain why.

7. Attempt any one part of the following: 7 x 1 = 7

- (a) Consider a Turing Machine that recognizes the language $L = \{ww^R \mid w \text{ is a string over } \{0, 1\}^*\}$. Design a Turing Machine that accepts this language and provide a detailed explanation of its operation.
- (b) Construct a Turing Machine that computes the function $f(n) = n^2$ for any given positive integer n . Provide a formal description of the machine, including its tape alphabet, state transitions, and final output.