

B. TECH.

THEORY EXAMINATION (SEM-VI) 2016-17
MATRIX ANALYSIS OF STRUCTRES

Time : 3 Hours**Max. Marks : 100****Note : Be precise in your answer. In case of numerical problem assume data wherever not provided.****SECTION-A**

1 Explain the following : (10×2=20)

- a)** Relation in flexibility and stiffness
- b)** Flexibility matrix
- c)** Stiffness matrix
- d)** Degree of freedom
- e)** Yielding of supports
- f)** Displacement method
- g)** Matrix inversion
- h)** Translational stiffness
- i)** Kinematic indeterminacy
- j)** Structural stability

SECTION-B

2 Attempt any five of the following : (10×5=50)

- a)** Find indeterminacy of 3 span continuous beam fixed at both ends and its suitable method of analysis
- b)** A one span beam 4m fixed at ends find its stiffness matrix.
- c)** Discuss indeterminacy static and kinematic for pin jointed frames
- d)** Discuss Transfer matrix method of analyzing framed structure.
- e)** Discuss Generalized computer oriented treatment of stiffness method
- f)** Discuss substructure technique for solving very large structures.
- g)** How you will form stiffness matrix for a beam of one span ends pinned
- h)** Discuss force method.

SECTION-C

Attempt any two of the following : (15×2=30)

- 3.** A rigid jointed building frame has ten story .it has 5 bays in one direction and 8 bays in other. Determine the degrees of static and kinematic indeterminacy for bases fixed and hinged.
- 4.** Solve 2 span beam 4m each fixed at ends by any suitable method subjected to udl of 30 kN/m on full span. Take EI constant.
- 5.** How you will solve settlement of intermediate support in 2 span beam fixed at ends.