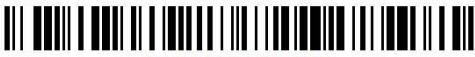


Roll No:

--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--


BTECH
(SEM VI) THEORY EXAMINATION 2021-22
CONTROL SYSTEM

Time: 3 Hours**Total Marks: 100****Note:** Attempt all Sections. If you require any missing data, then choose suitably.**SECTION A****1. Attempt all questions in brief.****2*10 = 20**

Q. No	Questions	CO
(a)	Define Loop and Self Loop with suitable diagram	1
(b)	Draw the Elementary Block Diagram of close loop system.	1
(c)	Enlist the condition for a system to be Observable.	2
(d)	Enlist any two properties of state transition matrix.	2
(e)	Define Settling time and Maximum peak overshoot.	3
(f)	Define Rise time and Peak Time.	3
(g)	Define Centroid.	4
(h)	Describe the Angle of Departure.	4
(i)	Define Gain Cross Over Frequency.	5
(j)	Define the term Gain Margin and Phase Margin.	5

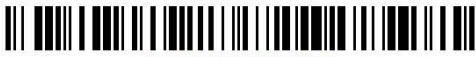
SECTION B**2. Attempt any three of the following:****10*3 = 30**

Q. No	Questions	CO
(a)	Obtain overall Transfer function for the given block diagram shown in Figure using Block reduction Method: 	1
(b)	Find out the Response for the given systems using parallel decomposition method also sketch its associated state space model. $\frac{Y(S)}{U(S)} = \frac{1}{(s+2)(s+3)(s+4)}$	2
(c)	Consider a unity feedback system with a closed transfer function $\frac{C(s)}{R(s)} = \frac{KS+b}{s^2+as+b}.$ Determine open loop transfer function. Show that the steady state error with unit ramp input is given by $\frac{a-K}{b}$.	3

Roll No:

BTECH
(SEM VI) THEORY EXAMINATION 2021-22
CONTROL SYSTEM

(d)	<p>The characteristic equation of a feedback control system is</p> $S^4 + 20S^3 + 15S^2 + 2S + k = 0$ <p>Determine the range of k for the system to be stable.</p>	4
(e)	<p>A single loop feedback control system has open loop transfer function .Sketch the Polar Plot.</p> $G(s)H(s) = \frac{1}{s(s + 3)}$	5


SECTION C

3. Attempt any *one* part of the following: 10*1 = 10

Q. No	Questions	CO
(a)	<p>Find the C/R and C/D ratio for the given System:</p>	1
(b)	<p>Using Mason's gain formula, evaluate the overall transfer function:</p>	1

4. Attempt any *one* part of the following: 10 *1 = 10

Q. No	Questions	CO
(a)	<p>Find out the Response for the given systems using parallel decomposition method also sketch its associated state space model.</p> $\frac{Y(S)}{U(S)} = \frac{2s^2 + 8s + 7}{(s + 1)(s + 2)^2}$	2
(b)	<p>Examine the Controllability and Observability of the following system:</p> $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$	2

Roll No:

--	--	--	--	--	--	--	--	--	--	--	--	--

BTECH
(SEM VI) THEORY EXAMINATION 2021-22
CONTROL SYSTEM

5. Attempt any one part of the following: 10*1 = 10

Q. No	Questions	CO
(a)	<p>The open loop transfer function of a unity feedback system is given by</p> $G(s) = \frac{K}{s(1+ST)}$ <p>Where 'K' & 'T' are positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step response of the system is reduced from 80% to 20%.</p>	3
(b)	<p>Evaluate the unit step response with proper derivation for a Critically damped 2nd order system.</p>	3

6. Attempt any one part of the following: 10*1 = 10

Q. No	Questions	CO
(a)	<p>For a unity feedback system of O.L.T.F is given by</p> $G(s)H(s) = \frac{1}{s(s+1)(s+3)}$ <p>a) Sketch the Root locus for $0 \leq K \leq \infty$.</p> <p>b) At what value of K, the system become unstable.</p>	4
(b)	<p>For a unity feedback system of O.L.T.F is given by</p> $G(s)H(s) = \frac{K}{s(s+6)(s^2+4s+13)}$ <p>a) Sketch the Root locus for $0 \leq K \leq \infty$.</p> <p>b) At what value of K, the system become stable.</p>	4

7. Attempt any one part of the following: 10*1 = 10

Q. No	Questions	CO
(a)	<p>Sketch the Bode Plot for the given system and comment on stability of the used systems:</p> $G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$	5
(b)	<p>Find out the Gain Cross Over Frequency, Phase cross over Frequency, Gain Margin and Phase Margin for the given system:</p> $G(s)H(s) = \frac{1}{s(1+s)(1+2s)}$	5