

Roll No:

--	--	--	--	--	--	--	--	--	--	--	--

BTECH
(SEM VI) THEORY EXAMINATION 2023-24
CONTROL SYSTEM

TIME: 3 HRS**M.MARKS: 100**

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A**1. Attempt all questions in brief.****2 x 10 = 20**

Q no.	Question	Marks	CO
a.	What is the difference between an open and closed loop system?	2	1
b.	In most of the cases, disturbances are introduced in process in closed loop control system. Why?	2	1
c.	What are the conditions for a system to be controllable?	2	2
d.	What are the advantages of state-space model over transfer function?	2	2
e.	What is the advantage of calculating overshoot control system?	2	3
f.	What is the difference between fall time and rise time?	2	3
g.	How location of poles is related to stability?	2	4
h.	How is departure angle measured?	2	4
i.	What is the significance of gain and phase margin?	2	5
j.	What is the significance of polar coordinates?	2	5

SECTION B**2. Attempt any three of the following:**

a.	Obtain the Transfer function of the given block diagram	10	1
b.	Derive a state space model for the system shown. The input is τ_a and the output is θ_1 .	10	2

BTECH
(SEM VI) THEORY EXAMINATION 2023-24
CONTROL SYSTEM

TIME: 3 HRS**M.MARKS: 100**

c.	<p>The open loop transfer function of a unity feedback system is given by</p> $G(S) = \frac{K}{S(1+ST)}$ <p>Where 'K' & 'T' are positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step response of the system is reduced from 75% to 25%..</p>	10	3
d.	<p>Using Routh Hurwitz Criterion, discuss the stability of the characteristic equation:</p> $2s^5 + 2s^4 + s^3 + 2s^2 + 2$	10	4
e.	<p>What is gain margin, phase margin, gain crossover frequency, and phase cross frequency? What is the practical use of these parameters?</p>	10	5

SECTION C**3. Attempt any one part of the following:**

a.	<p>Construct the signal flow graph for the following set of simultaneous equations and obtain the overall transfer function using Mason's gain formula.</p> $X_2 = A_{21}X_1 + A_{23}X_3$ $X_3 = A_{31}X_1 + A_{32}X_2 + A_{33}X_3$ $X_4 = A_{42}X_2 + A_{43}X_3$	10	1
b.	<p>Reduce the block diagram to its canonical form and obtain $C(S)/R(S)$.</p>	10	1

4. Attempt any one part of the following:

a.	<p>For a single input system</p> $\dot{X} = AX + BU$ $Y = CX$ $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}; \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \quad C = \begin{bmatrix} 1 & 1 \end{bmatrix}$ <p>Check the controllability & observability of the system.</p>	10	2
b.	<p>Examine the Controllability and Observability of the following system:</p> $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$	10	2

Roll No:

--	--	--	--	--	--	--	--	--	--	--	--

BTECH
(SEM VI) THEORY EXAMINATION 2023-24
CONTROL SYSTEM

TIME: 3 HRS**M.MARKS: 100****5. Attempt any one part of the following:**

a.	<p>Consider a standard second order system given by</p> $\frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2}$ <p>The correlation between the maximum peak overshoot in the time domain and the resonant peak in the frequency domain exists when:</p>	10	3
b.	<p>The output of a standard second-order system for a unit-step input is given as</p> $y(t) = 1 - \frac{2}{\sqrt{3}} e^{-t} \cos \left(\sqrt{3}t - \frac{\pi}{6} \right)$ <p>What is the transfer function of the system?</p>	10	3

6. Attempt any one part of the following:

a.	<p>Using Routh Hurwitz Criterion, discuss the stability of the characteristic equation:</p> $F(s) = 2s^5 + 3s^4 + 2s^3 + s^2 + 2s + 2$	10	4
b.	<p>Consider a unity-feedback control system with the following feedforward transfer function:</p> $G(s) = \frac{K}{s(s+1)(s+2)}$ <p>Draw plot the root locus.</p>	10	4

7. Attempt any one part of the following:

a.	<p>Sketch the Bode Plot for the given system and comment on stability of the used systems:</p> $G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$	10	5
b.	<p>Construct the Bode plots for a unity feedback system whose open-loop transfer function is given by $[0.25(1+0.5s)] / [s(1+2s)(1+4s)]$. From the Bode plot, determine the following:</p> <p>a) Gain and phase crossover frequencies, b) Gain and phase margin, and c) Comment on the stability of the system.</p>	10	5